393 research outputs found

    Temporal and spatial combining for 5G mmWave small cells

    Get PDF
    This chapter proposes the combination of temporal processing through Rake combining based on direct sequence-spread spectrum (DS-SS), and multiple antenna beamforming or antenna spatial diversity as a possible physical layer access technique for fifth generation (5G) small cell base stations (SBS) operating in the millimetre wave (mmWave) frequencies. Unlike earlier works in the literature aimed at previous generation wireless, the use of the beamforming is presented as operating in the radio frequency (RF) domain, rather than the baseband domain, to minimise power expenditure as a more suitable method for 5G small cells. Some potential limitations associated with massive multiple input-multiple output (MIMO) for small cells are discussed relating to the likely limitation on available antennas and resultant beamwidth. Rather than relying, solely, on expensive and potentially power hungry massive MIMO (which in the case of a SBS for indoor use will be limited by a physically small form factor) the use of a limited number of antennas, complimented with Rake combining, or antenna diversity is given consideration for short distance indoor communications for both the SBS) and user equipment (UE). The proposal’s aim is twofold: to solve eroded path loss due to the effective antenna aperture reduction and to satisfy sensitivity to blockages and multipath dispersion in indoor, small coverage area base stations. Two candidate architectures are proposed. With higher data rates, more rigorous analysis of circuit power and its effect on energy efficiency (EE) is provided. A detailed investigation is provided into the likely design and signal processing requirements. Finally, the proposed architectures are compared to current fourth generation long term evolution (LTE) MIMO technologies for their anticipated power consumption and EE

    Insights and approaches for low-complexity 5G small-cell base-station design for indoor dense networks

    Get PDF
    This paper investigates low-complexity approaches to small-cell base-station (SBS) design, suitable for future 5G millimeter-wave (mmWave) indoor deployments. Using large-scale antenna systems and high-bandwidth spectrum, such SBS can theoretically achieve the anticipated future data bandwidth demand of 10000 fold in the next 20 years. We look to exploit small cell distances to simplify SBS design, particularly considering dense indoor installations. We compare theoretical results, based on a link budget analysis, with the system simulation of a densely deployed indoor network using appropriate mmWave channel propagation conditions. The frequency diverse bands of 28 and 72 GHz of the mmWave spectrum are assumed in the analysis. We investigate the performance of low-complexity approaches using a minimal number of antennas at the base station and the user equipment. Using the appropriate power consumption models and the state-of-the-art sub-component power usage, we determine the total power consumption and the energy efficiency of such systems. With mmWave being typified nonline-of-sight communication, we further investigate and propose the use of direct sequence spread spectrum as a means to overcome this, and discuss the use of multipath detection and combining as a suitable mechanism to maximize link reliability

    Temporal and spatial combining for 5G mmWave small cells

    Get PDF
    This chapter proposes the combination of temporal processing through Rake combining based on direct sequence-spread spectrum (DS-SS), and multiple antenna beamforming or antenna spatial diversity as a possible physical layer access technique for fifth generation (5G) small cell base stations (SBS) operating in the millimetre wave (mmWave) frequencies. Unlike earlier works in the literature aimed at previous generation wireless, the use of the beamforming is presented as operating in the radio frequency (RF) domain, rather than the baseband domain, to minimise power expenditure as a more suitable method for 5G small cells. Some potential limitations associated with massive multiple input-multiple output (MIMO) for small cells are discussed relating to the likely limitation on available antennas and resultant beamwidth. Rather than relying, solely, on expensive and potentially power hungry massive MIMO (which in the case of a SBS for indoor use will be limited by a physically small form factor) the use of a limited number of antennas, complimented with Rake combining, or antenna diversity is given consideration for short distance indoor communications for both the SBS) and user equipment (UE). The proposal’s aim is twofold: to solve eroded path loss due to the effective antenna aperture reduction and to satisfy sensitivity to blockages and multipath dispersion in indoor, small coverage area base stations. Two candidate architectures are proposed. With higher data rates, more rigorous analysis of circuit power and its effect on energy efficiency (EE) is provided. A detailed investigation is provided into the likely design and signal processing requirements. Finally, the proposed architectures are compared to current fourth generation long term evolution (LTE) MIMO technologies for their anticipated power consumption and EE

    Towards a kerogen-to-graphite kinetic model by means of Raman spectroscopy  

    Get PDF
    Acknowledgements This work was funded by the School of Geosciences, University of Aberdeen. Stimulating discussion with Sveva Corrado and Thomas Theurer greatly enriched this work. The Editor Shuhab Khan, the reviewer Aaron Jubb and two anonymous reviewers are kindly acknowledged for their comments that significantly improve the original version of the manuscript.Peer reviewedPublisher PD

    The applicability of Raman spectroscopy in the assessment of palaeowildfire intensity

    Get PDF
    Acknowledgments We would like to thank Maria-Ara Carballo-Meilan, Ilse Kamerling and Colin Taylor for their kind assistance with the procurement and operation of pyrolysis equipment. The use of Calluna vulgaris material in this study was informed under an assessment of ‘least concern’ by the IUCN Red List of Threatened Species. This research was supported by funds from the School of Geosciences, University of Aberdeen.Peer reviewedPostprin

    Carbon ordering in an aseismic shear zone : implications for Raman geothermometry and strain tracking

    Get PDF
    Acknowledgements: This study was carried out as part of a University of Aberdeen PhD, supported by the NERC (Natural Environment Research Council) Centre for Doctoral Training in Oil & Gas [grant number 316 NE/R01051X/1].Peer reviewedPostprin

    Raman spectroscopy in thrust-stacked carbonates : an investigation of spectral parameters with implications for temperature calculations in strained samples

    Get PDF
    Acknowledgements This study was carried out as part of a University of Aberdeen PhD, supported by the UKRI Centre for Doctoral Training in Oil & Gas [grant number NE/R01051X/1].Peer reviewedPublisher PD

    Myocardial dysfunction after out-of-hospital cardiac arrest: predictors and prognostic implications.

    Get PDF
    We aim to determine the incidence of early myocardial dysfunction after out-of-hospital cardiac arrest, risk factors associated with its development, and association with outcome. A retrospective chart review was performed among consecutive out-of-hospital cardiac arrest (OHCA) patients who underwent echocardiography within 24 h of return of spontaneous circulation at three urban teaching hospitals. Our primary outcome is early myocardial dysfunction, defined as a left ventricular ejection fraction \u3c 40% on initial echocardiogram. We also determine risk factors associated with myocardial dysfunction using multivariate analysis, and examine its association with survival and neurologic outcome. A total of 190 patients achieved ROSC and underwent echocardiography within 24 h. Of these, 83 (44%) patients had myocardial dysfunction. A total of 37 (45%) patients with myocardial dysfunction survived to discharge, 39% with intact neurologic status. History of congestive heart failure (OR 6.21; 95% CI 2.54-15.19), male gender (OR 2.27; 95% CI 1.08-4.78), witnessed arrest (OR 4.20; 95% CI 1.78-9.93), more than three doses of epinephrine (OR 6.10; 95% CI 1.12-33.14), more than four defibrillations (OR 4.7; 95% CI 1.35-16.43), longer duration of resuscitation (OR 1.06; 95% CI 1.01-1.10), and therapeutic hypothermia (OR 3.93; 95% CI 1.32-11.75) were associated with myocardial dysfunction. Cardiopulmonary resuscitation immediately initiated by healthcare personnel was associated with lower odds of myocardial dysfunction (OR 0.40; 95% CI 0.17-0.97). There was no association between early myocardial dysfunction and mortality or neurological outcome. Nearly half of OHCA patients have myocardial dysfunction. A number of clinical factors are associated with myocardial dysfunction, and may aid providers in anticipating which patients need early diagnostic evaluation and specific treatments. Early myocardial dysfunction is not associated with neurologically intact survival

    Oil charge and biodegradation history in an exhumed fractured reservoir, Devonian, UK

    Get PDF
    Fluid inclusion data were determined by J. Kelly. JK and MB were in receipt of PhD studentships from the Department of Education (Northern Ireland) and PTDF (Nigeria) respectively. We are grateful to Geology Honours classes from the University of Aberdeen for help in collecting data, and to two constructive reviews of the manuscript.Peer reviewedPostprin
    • …
    corecore